D’Hondt-Verfahren

Das D’Hondt-Verfahren (nach dem belgischen Juristen Victor D’Hondt; auch Divisorverfahren mit Abrundung, im angelsächsischen Raum: Jefferson-Verfahren, in der Schweiz: Hagenbach-Bischoff-Verfahren) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl) benötigt wird, um Wählerstimmen in Abgeordnetenmandate umzurechnen.

Das Verfahren kann in Form fünf mathematisch äquivalenter Algorithmen bzw. Varianten verwendet werden, die stets dasselbe Sitzzuteilungsergebnis generieren:

  • als Zweischrittverfahren,
  • als Höchstzahlverfahren,
  • als Rangmaßzahlverfahren,
  • als Paarweiser-Vergleich-Verfahren oder
  • als Quasi-Quotenverfahren wie vom Schweizer Physiker Eduard Hagenbach-Bischoff beschrieben.

In Österreich wird das D’Hondt-Verfahren im dritten Ermittlungsverfahren bei Wahlen zum Nationalrat (siehe NRWO), bei Hochschülerschaftswahlen sowie bei Betriebsratswahlen angewandt.

Bei den Wahlen zum Europäischen Parlament wird das D’Hondt-Verfahren in einem Großteil der Länder angewendet, um die nationalen Parlamentssitze zuzuordnen.

Berechnungsbeispiel

Treten zur Wahl eines Gremiums mehrere Parteien an, ist der proportionale Sitzanteil auf Basis des Stimmenanteils (Idealanspruch) nur in seltenen Fällen ganzzahlig. Daher ist ein Verfahren zur Berechnung einer ganzzahligen Sitzzahl notwendig, die jede Partei in dem Gremium erhält.

Bei Verwendung des d’hondtschen Höchstzahlverfahrens teilt man die Zahl der erhaltenen Stimmen einer Partei nacheinander durch eine aufsteigende Folge natürlicher Zahlen (1, 2, 3, 4, 5, …, n). Die dabei erhaltenen Bruchzahlen werden als Höchstzahlen bezeichnet. Als Basis dieser Division (Dividend) wird dabei immer die Ausgangszahl – hier also die ursprüngliche „Zahl der Stimmen“ – herangezogen. Der Dividend bleibt in jeder Spalte stets gleich und wird durch den sich verändernden Divisor (hier: 1, 2, 3, …) geteilt.

Die Höchstzahlen werden danach absteigend nach ihrer Größe geordnet. Die so ermittelte Reihenfolge gibt die Vergabereihenfolge der Sitze an. Es finden so viele Höchstzahlen Berücksichtigung, wie Sitze im Gremium zu vergeben sind. Im vorliegenden Beispiel werden 10 Sitze vergeben. Die 10 größten Höchstzahlen (dunkler unterlegt) werden absteigend nach ihrer Größe an die ihnen zugeordneten Parteien verteilt. Die letzte bzw. kleinste Höchstzahl, für die eine Partei noch einen Sitz erhält, gibt den Vertretungswert (auch Vertretungsgewicht) ihrer Sitze an. Der Vertretungswert ist das Verhältnis aus Stimmen- und Sitzanzahl einer Partei. Partei A repräsentiert mit jedem Sitz 104, Partei B 84,5 und Partei C 123 Wähler. Nicht nur absolut, sondern auch im Verhältnis zu ihrem Stimmenanteil ist Partei B im Gremium deutlich stärker vertreten als Partei C.

Bei Verwendung des Zweistufenverfahrens werden die Stimmenzahlen aller Parteien durch eine geeignete (nicht notwendig ganze) Zahl (Divisor) geteilt und die Ergebnisse abgerundet. Die Zahl lässt sich durch Probieren ermitteln. Sie ist höchstens gleich jener Höchstzahl, die als letzte zu einem Mandat führt. Diese Höchstzahl ist immer geeignet. Jede Zahl, die zur richtigen Gesamtzahl von Sitzen führt, ist geeignet. Im Beispiel ergibt sich die Sitzzuteilung auch mittels Division durch 84, das heißt für je volle 84 Stimmen erhält jede Partei einen Sitz.

Partei Zahl der
Stimmen
Prozentanteil
der Stimmen
Sitze pro-
portional
Sitze nach
d’Hondt
Partei A 416 41,6 % 4,16 4
Partei B 338 33,8 % 3,38 4
Partei C 246 24,6 % 2,46 2
1000 100,00 % 10 10
Stimmenverteilung
bei der Wahl eines 10-köpfigen Gremiums
Divisor Partei A Partei B Partei C
1 416 (1) 338 (2) 246 (3)
2 208 (4) 169 (5) 123 (7)
3 138,7 (6) 112,7 (8) 82
4 104 (9) 84,5 (10) 61,5
5 83,2 67,6 49,2
6 69,3 56,3 41
Ermittlung der Höchstzahlen (die Werte
in Klammern entsprechen der Vergabereihenfolge)

Eigenschaften

Fehlerminimierung (Minimax-Kriterium)

D’Hondt maximiert den minimalen (niedrigsten) Vertretungswert (Stimmen pro Sitz). D. h. bei gegebenem Wahlergebnis gibt es kein anderes Sitzzuteilungsverfahren, bei dem das Stimmen-Sitz-Verhältnis der Partei mit dem niedrigsten Stimmen-Sitz-Verhältnis höher ist als das Stimmen-Sitz-Verhältnis der Partei mit dem niedrigsten Stimmen-Sitz-Verhältnis nach D’Hondt.

Umgekehrt zum Vertretungswert bestimmt man den Erfolgswert als das Verhältnis von Sitzen pro Stimme für eine Partei (Kehrwert des Vertretungswerts). Folglich minimiert D’Hondt den maximalen (höchsten) Erfolgswert (Sitze pro Stimme).

Der Erfolgswert der Partei {displaystyle pin {1,dots ,P}} ist definiert als

{displaystyle e_{p}={frac {s_{p}}{v_{p}}},}

wo

{displaystyle s_{p}} – der Sitzanteil der Partei {displaystyle p}{displaystyle s_{p}in [0,1],;sum _{p}s_{p}=1},
{displaystyle v_{p}} – der Stimmenanteil der Partei {displaystyle p}{displaystyle v_{p}in [0,1],;sum _{p}v_{p}=1}.

Der höchste Erfolgswert ist definiert als

{displaystyle delta =max _{p}e_{p}.}

D’Hondt weist Sitze so zu, dass der Erfolgswert so gering wie möglich ist und den Wert erreicht,

{displaystyle delta ^{*}=min _{mathbf {s} in {mathcal {S}}}max _{p}e_{p}},

wo {displaystyle mathbf {s} ={s_{1},dots ,s_{P}}} ist eine Sitzverteilung auf die Parteien und {displaystyle {mathcal {S}}} die Menge aller möglichen Sitzverteilungen. Dank dieser Funktion teilt D’Hondt die Stimmen in genau proportional dargestellte Stimmen und verbleibende Stimmen auf, wodurch der Anteil der verbleibenden Stimmen minimiert wird. Der Gesamtanteil der Reststimmen beträgt

{displaystyle pi ^{*}=1-{frac {1}{delta ^{*}}}}.

Der Reststimmenanteil der der Partei {displaystyle p} berechnet sich wie folgt

{displaystyle r_{p}=v_{p}-(1-pi ^{*})s_{p},;r_{p}in [0,v_{p}],sum _{p},r_{p}=pi ^{*}}.

Zum Beispiel der drei Parteien mit 416, 338 und 246 Stimmen, die 4, 4 und 2 Sitze erhalten haben. Ihre Erfolgswerte sind 0,96, 1,18, 0,81. Der höchste Erfolgswert ist 1,18. Folglich beträgt der Bruchteil der Reststimmen 1 – 1 / 1,18 = 0,155 oder 15,5 %. Die verbleibenden Stimmenanteile der Parteien betragen 7,8 %, 0 % und 7,7 %. Dies ist in der folgenden Tabelle dargestellt.

Mehrheitsbedingung

D’Hondt erfüllt die Mehrheitsbedingung, nicht aber die Minderheitsbedingung. D. h. eine Partei, die mindestens 50 % der Stimmen auf sich vereinigt, erhält auch mindestens 50 % der Sitze. Umgekehrt kann aber eine Partei, die nicht mindestens 50 % der Stimmen auf sich vereinigt, trotzdem 50 % der Sitze erhalten, wenn alle anderen Parteien ein schlechteres Stimmenergebnis haben.

Die Erfüllung der Mehrheitsbedingung wird durch die systematische Bevorzugung größerer Parteien „erkauft“. Soll hingegen sichergestellt werden, dass eine Partei mit absoluter Stimmenmehrheit, also mehr als die Hälfte der Stimmen, auch die absolute Mehrheit der Sitze erhält, muss die Gesamtsitzzahl ungerade sein.

Dass D’Hondt bei gerader Gesamtsitzzahl die absolute Mehrheitsbedingung nicht grundsätzlich erfüllt, zeigt folgendes Beispiel: Anzahl zu vergebender Sitze: 10, Anzahl abgegebener gültiger Stimmen: 1000. Partei A: 505 Stimmen, Partei B 495 Stimmen. Im Ergebnis erhalten beide Parteien 5 Sitze und Partei A damit nicht die absolute Mehrheit von (mindestens) 6 Sitzen.

Das Problem ließe sich beseitigen, indem der Partei mit absoluter Stimmenmehrheit, wenn sie nicht die absolute Mehrheit der Sitze erhalten hat, ein zusätzlicher Sitz zugeteilt und die Gesamtsitzzahl damit ungerade gemacht wird. Soll die Gesamtsitzzahl des Gremiums jedoch unter allen Umständen geradzahlig sein, müsste eine Regelung getroffen werden, nach der die größte Partei einen Grundsitz erhält und nur die restlichen Sitze nach D’Hondt verteilt werden, was eine zusätzliche Proporzverzerrung schaffen würde.

Quotenbedingung

Wie bei allen anderen Divisorverfahren kann die Quotenbedingung verletzt werden (siehe Extrembeispiel im nächsten Abschnitt), nach der die Sitzzahl einer Partei nur um weniger als 1 von ihrem Idealanspruch bzw. ihrer Quote (Stimmenzahl mal Mandatszahl geteilt durch Gesamtstimmenzahl) abweichen soll:

  • nach dem D’Hondt-Verfahren kann eine (große) Partei nicht nur den auf die nächste ganze Zahl nach oben gerundeten Sitzanspruch erhalten, sondern sogar einen oder mehrere Sitze darüber hinaus;
  • der umgekehrte Fall ist jedoch nicht möglich, da das Verfahren die Quotenbedingung zwar nicht nach oben, wohl aber nach unten erfüllt; d. h. keine (kleine) Partei kann weniger Sitze erhalten, als es ihrer abgerundeten Quote entspricht.

Benachteiligung kleinerer Parteien

Die Sitzzuteilung kann stark von der Proportionalität abweichen (proporzverzerrende Wirkung in Form systematischer Benachteiligung kleinerer Parteien). Dieser Effekt wird gefördert durch große Unterschiede in den Parteistärken, eine hohe Anzahl antretender Parteien und eine niedrige Anzahl zu vergebender Sitze.

Extremes Beispiel: Anzahl zu vergebender Sitze: 10, Anzahl abgegebener gültiger Stimmen: 1000. Partei A erringt 600 Stimmen, 7 weitere Parteien erringen zusammen 400 Stimmen (darunter keine mehr als 59). Im Ergebnis erhält Partei A mit einem Stimmenanteil von 60 % alle 10 Sitze und ein Sitz vertritt 60 Stimmen der Partei A.

Allgemein gilt: Bei n zu vergebenden Sitzen erhält die stärkste Partei alle n Sitze, wenn ihr Stimmenanteil mehr als n-mal größer ist als der der zweitstärksten Partei. Somit kann die stärkste Partei bei beliebig kleinem Stimmenanteil alle Sitze erhalten, wenn die Parteienanzahl entsprechend groß ist. Ist der Stimmenanteil der stärksten Partei genau n-mal so groß wie der der zweitstärksten, haben beide Parteien den gleichen Anspruch auf den n-ten Sitz, der folglich verlost werden muss.

Vergleich mit dem Hare-Niemeyer-Verfahren und dem Sainte-Laguë-Verfahren

Am Beispiel der Landtagswahl Schleswig-Holstein 2005 kann illustriert werden, dass das D’Hondt-Verfahren kleinere Parteien gegenüber größeren benachteiligen kann, das Hare-Niemeyer-Verfahren und das Sainte-Laguë-Verfahren jedoch nicht. Je nach Sichtweise könnte man aber auch formulieren, dass Hare-Niemeyer-Verfahren und das Sainte-Laguë-Verfahren kleinere Parteien bevorzugen kann, da für diese ein Sitz weniger Stimmen vertritt. In Schleswig-Holstein wurde bis zum Jahr 2009 bei Landtagswahlen das D’Hondt-Verfahren angewandt; seit 2012 gilt das Sainte-Laguë-Verfahren.

Die relative Abweichung vom Idealanspruch gibt an, um welchen Prozentsatz die Vertretung einer Partei mit Abgeordneten im Parlament von ihrem bei der Wahl errungenen Stimmenanteil abweicht:

  • ist die relative Abweichung vom Idealanspruch positiv, erlangt die Partei durch das Sitzzuteilungsverfahren einen Vorteil, da sie im Parlament stärker vertreten ist, als es ihrem Stimmenanteil entspricht;
  • ist die relative Abweichung vom Idealanspruch negativ, erlangt die Partei durch das Sitzzuteilungsverfahren einen Nachteil, da sie im Parlament schwächer vertreten ist, als es ihrem Stimmenanteil entspricht.

Mehrfache Anwendung

Zu einer erheblich disproportionalen Sitzverteilung kann die Anwendung des D’Hondt-Verfahrens führen, wenn das Gesamtwahlgebiet in Untergebiete gegliedert und dort jeweils eine feste Anzahl von Abgeordneten gewählt wird, insbesondere wenn wenige Sitze zu vergeben sind. Die Anwendung des D’Hondt-Verfahrens führt dann entsprechend der Anzahl der Untergebiete zu einer Verstärkung des Effekts der Benachteiligung kleinerer Parteien. Ein solches Zuteilungsverfahren gibt es in der Schweiz und in vielen weiteren Ländern, unter anderem in Spanien, Portugal, Belgien, Polen und Finnland. In manchen dieser Länder gibt es Sperrklauseln entweder landesweit oder nur auf Wahlkreisebene. In Spanien ist die Sitzverteilung im Abgeordnetenhaus bedingt durch größtenteils kleine Wahlkreise besonders disproportional. In der Schweiz schwächt die Möglichkeit zu Listenverbindungen die Nachteile für kleine Parteien ab.

Quellen

http://de.wikipedia.org/wiki/D%27Hondt-Verfahren 24.09.2021

Lizenzinformation zu diesem Artikel

Dieser Artikel basiert auf dem in den Quellen angeführten Wikipedia-Artikel, verfügbar unter der LizenzCC BY-SA 3.0“.

Bewertung dieses Artikels

Teilen   

Kanzlei-Empfehlung

skpr_02
paul-kessler

Videos

Podcast

Einfach in 3 Schritten einen Anwalt finden, der auf Ihr Rechtsproblem spezialisiert ist

Ein zugelassener Anwalt / eine zugelassen Anwältin ist dafür da, über Rechtsfragen zu beraten und Klienten vor Gericht zu vertreten. Es ist seine Aufgabe, Dienstleistungen im Bereich der Rechtsberatung zu erbringen und Klienten vor Gericht zu vertreten. Mit diesem Wissen kennt er alle relevanten Herausforderungen dieses Systems und ist mit allen einschlägigen Rechtsnormen vertraut.

Fachexperten auf Ihrem Gebiet

Anwalts-Empfehlungen gefiltert durch das RechtEasy-Team -Best Choice der Anwälte in Österreich

Chatbox aufmachen

Klicken Sie auf den blauen Button im rechten unteren Eck und wählen aus, dass Sie eine Anwaltsempfehlung benötigen.

Problem schildern

Erklären Sie, welches Anliegen Sie haben. Gehen Sie hier auch gerne ins Detail.

Zurücklehnen

Unser Team beurteilt Ihre Rechtsfrage und vermittelt den richtigen Anwalt/die richtige Anwältin für Sie in Ihrer Region.

Die Vermittlung ist kostenlos. Der jeweilige Anwalt wird Ihnen vorab die genauen Kosten mitteilen, sodass Sie immer die volle Kontrolle haben.

Rechts unten den Chat öffnen, Rechtsfrage stellen und gleich vermitteln lassen.

Jetzt zum Newsletter anmelden!

Auf RechtEasy befinden sich über 7500 Begriffserklärungen und juristische Ratgeber, die von Rechtsanwälten und Juristen verfasst wurden

Filter